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Turbulent domain stabilization in annular flows
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We point out a mechanism for stabilizing expanding turbulent domains in annular flows. This nonlo-
cal mechanism is explained within the context of a Ginzburg-Landau equation for a real amplitude. The
expression for the nonlocal term can be derived by analogy with existing calculations in Taylor-Couette
flow for Taylor vortices. Numerical results are compared with experiment.
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Turbulence can manifest itself in coherent structures.
Spectacular examples of turbulent structures coexisting
with laminar flow are provided by slugs in pipe flow, Em-
mons spots in boundary layer flow, and spiral turbulence
in Taylor-Couette flow. It has been suggested that a
model equation of the Ginzburg-Landau (GL) [1] type
with subcritical behavior can provide a convenient start-
ing point for discussing such situations. The reason is
that in some range of parameters, this equation supports
two linearly stable solutions, one of zero amplitude (the
laminar phase) and one of finite amplitude (the turbulent
phase).

The difficulty with the subcritical GL equation is that
as long as its coefficients are real, any finite size domain
of the turbulent state surrounded by the laminar one is
unstable [3-5]. At one particular, critical value of the
control parameter u [see Eq. (1)] a state of large extent,
with sharp boundaries, may be very long lived [5]. How-
ever, this is not the typical situation, for which the con-
trol parameter is determined by some externally imposed
constraints, and one wants to understand how an expand-
ing (or contracting) domain can stabilize for some finite
range of parameters. This difficulty with the real GL
equation is remedied when the coefficients become com-
plex. In that case stable, pulselike solutions of complex
amplitude exist [3], and their behavior has been discussed
[3-5] and argued to be relevant to describing localized
structures in binary convection.

We discuss here a different mechanism relevant in
cases of annular flows. The starting point is the subcriti-
cal GL equation with real coefficients. Stabilization of
domains, however, occurs not because of complex
coefficients, but through a nonlocal term.

It has been argued before [2] that backflow can lead to
the stabilization of turbulent spots and their coexistence
with laminar domains. The remarks referred, in particu-
lar, to the case of spiral turbulence in the Taylor-Couette
flow [6]. Here, in a section of the cylinders perpendicular
to their common axis the laminar and turbulent domain
coexit, and in the appropriate range of control parame-
ters the situation is hysterectic [7]: within the laminar
domain a turbulent perturbation grows to a spot which
fills close to half the available space in a cylinder section
perpendicular to the axis.

Previous work on amplitude equations, which deals not
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with spiral turbulence, but with the amplitudes of Taylor
vortices close to the threshold of their occurrence [8,10,9]
indicates how backflow may arise. In particular, Hall
[10] has shown that (in the small gap limit) one is led to
the introduction of an azimuthal pressure gradient,
which adds to the azimuthal velocity a Poiseuille com-
ponent, leading in turn to a nonlocal term in the ampli-
tude equation. Before giving details about how a similar
calculation should be relevant to the coexistence of lami-
nar and turbulent domains, let us show numerically and
also explain how a certain nonlocal term in a GL equa-
tion with real coefficients can lead to a stable domain
structure, whereas in the absence of such a term none ex-
ists, as mentioned above.

The equation without the nonlocal term is the usual
subcritical GL equation for a complex amplitude 4 with
real coefficients (written in one dimension and after con-
venient rescaling):

0A/3t=pA+ A, +BlAI*A+y|A|*4 . (n

The phase of 4 does not play any role and in the subse-
quent discussion 4 may be as well considered a real func-
tion. Here p is the control parameter, the coefficients 8
and y are, respectively, positive and negative. The
behavior of | 4| as a function of u is shown in Fig. 1. For
u negative between 0 and 82/4y the two stationary and
uniform states 4 =0 and A4 * are linearly stable. Howev-
er, they may be unstable to finite perturbations. What
happens is determined by the right hand side of Eq. (1)
which derives from a potential ¥ such that

dA/dt=A,—3V/IA®, 2)

where A€ is the complex conjugate of 4. The potential
has two minima in the range of control parameter men-
tioned above. When these are equal, at p=p
=3B2/16y, the two corresponding states, 4 =0 and A*
coexist. When they are not equal, one state invades the
other one, the 4 =0 state the 4* one for u<pu,, and
vice versa for u>pu . [2,4].

For our purposes we interpret 4 as the amplitude of
turbulent fluctuations, and thus 4 =0 represents the lam-
inar state and 4= A4* the turbulent state. Now the
modification to Eq. (1) which leads to turbulent domain
stabilization, consists in introducing the nonlocal term
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FIG. 1. Diagram indicating the variation of | 4| with control
parameter . The A=0and 4 * states coexist from p=0 to F.
The curve is drawn for 8=0.5 and y=—0.75, for which
F=-—1=-0.0833. A4=A4" corresponds to the full line. The
line with crosses corresponds to a linearly unstable state.

g=0/L) [ 4l%dx 3)
0
such that the modified equation reads
dA/dt=pA+ A +B|A|*—T)A+y|4]*4 . @

Here, L denotes the perimeter of the annular flow region.
(The calculation is done for a circular region in the small
gap limit.) Since the contribution to J comes only from
the turbulent domain, the value of J is smaller than 1
(A* has values close to 1). Neglecting domain boun-
daries, one thus has J=~ 4 ** /L, where I is the extent of
the turbulent domain (in one space dimension).

There is no reason why the (dimensionless) coefficient
in front of J in (4) should be taken exactly equal to 1.
Our choice is one of simplicity, and is also in agreement
with the result of the model calculation performed fur-
ther on [cf. Eq. (12)].

We show in Fig. 2 what is happening. The starting
point is a domain size of / =30 (with L =600) of 4*, em-
bedded in a laminar domain 4 =0, for values of u, B, ¥y
such that p>pu .. For =0 the turbulent domain would
expand into the laminar one and completely fill it. How-
ever, here, as soon as the domain expands, the contribu-
tion to J increases, the effective B, whose value is very
roughly equal to B(1—1/L) (see end of preceding para-
graph), diminishes, and, therefore, the effective u. de-
creases in absolute value until its value is equal to that of
4, at which time the expansion stops. The opposite
phenomenon happens when the initial domain is corre-
spondingly larger, in which case initially y is smaller than
the effective p1,. (Both quantities are negative.) The tur-
bulent domain then shrinks to the same final size (for the
same u, B, v of course). Take that final domain, and as-
sume one makes it larger: J then increases, the effective B
decreases in absolute value, the corresponding effective
1. moves to the right of u (see Fig. 1), and thus the lami-
nar domain expands, or equivalently the turbulent one
shrinks back to its initial value. The same regulatory
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FIG. 2. Expansion of a turbulent domain in time (only a frac-
tion of the full domain is shown). The abscissa indicates system
size in lattice points. Distance between consecutive lattice
points is 8x =1. The ordinate shows | 4|. There are six curves.
Successive curves are equidistant in time, by 3600 time steps
where each time step is 8 =0.02, the first curve being obtained
this way from the starting configuration, for which the domain
is of width equal to 30 lattice points. Values of the parameters
are =0.5, y=—0.75, and u=p+0.04=—1/16+0.04.

mechanism acts if one starts by shortening the domain.
Thus the turbulent domain at the point where the
effective . is equal to u is stable. Since the effective .
depends on the ratio / /L only, not on / or L separately, it
is the relative size of the turbulent domain which, for a
given set of parameters, is fixed.

Let us now discuss the velocity of an expanding
domain. In Fig. 3 is shown how the length of the
domain, relative to its initial size, increases as a function
of time. The initial growth is practically linear. As, how-
ever, the effective ., approaches the given value of u, the
expansion slows and the size becomes constant. From
the initial linear rise one can define a rate of expansion.
This rate of expansion depends on how close the initial
size is as compared to the final one. Figure 4 shows that
this initial rate of expansion itself varies nearly linearly as
a function of distance from threshold. This linear varia-
tion is in qualitative agreement with theoretical results on
Eq. (1) (for which however there is no saturation.) It is
noteworthy that the results of Figs. 3 and 4 are qualita-
tively similar to those which Dauchot and Daviaud [11]
have obtained for the behavior of stable turbulent spots
in plane Couette flow, and thus appear as generic proper-
ties of a subcritical GL amplitude equation. The curve in
Fig. 4 does not pass through the origin, because, for the
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FIG. 3. Size I of an expanding turbulent domain as a function
of time. Initial size has been subtracted. Time and length are in
real units. Parameter values are the same as for Fig. 2.
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FIG. 4. Expansion rate E of a domain as a function of dis-
tance to threshold. The abscissa represents Su=p—pu.. Pa-
rameter values are the same as for Fig. 1. The size of the origi-
nal domain is 30 in lattice units.

given initial size (30 in lattice units), the domain actually
starts shrinking when the abscissa goes below 0.02.

Now it remains to be shown how a nonlocal term arises
in annular flow, in the first place, which then leads to a
transformation of Eq. (1) into the form given by Eq. (2).
We are following Hall’s [10] lead. It is easily shown
[8-10] that in the small gap limit (width of annulus much
smaller than average radius), the equation of mass conser-
vation takes the “Cartesian’ form:

du /9y +3dv /3x =0, (5)

where y and x are, respectively, the appropriately scaled
radial and azimuthal variables, and u and v the dimen-
sionless radial and azimuthal velocity components. y
varies in the interval [0,1] and x, which is periodic, in the
interval [0, L].

We assume that v takes the form

v=A42x)f(y) . (6)

Such a form represents the average flow velocity in both
turbulent and laminar regions, and is proportional to the
square of the amplitude of turbulent fluctuations. It
seems plausible that the only large scale change intro-
duced by turbulence into a laminar, circularly symmetric,
flow is the dependence of 4 on the azimuthal variable.
In Hall’s work [10] the above form of v arises in an ampli-
tude expansion close to the threshold for the occurrence
of Taylor vortices. Here, the above form is taken as a
plausible starting point.

Now, as soon as v acquires a x dependence, a radial ve-
locity component u exists, related to v by Eq. (5). Our
description is incomplete, however, because u thus
defined cannot satisfy the no slip boundary condition at
y=0 and 1, which requires that [ }(du/dy)dy =0, as
long as there is a nonzero mass flux through an annular
cross section. The remedy is that there exists an azimu-
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thal pressure gradient such that the equation satisfied by
v is the following:

9% /3%y =—dp/dx +| A|*d>*f /dYy . @)

In the small gap limit the second derivative relative to y
is the dominant term in the laplacian of v. Moreover, one
indeed expects that turbulent fluctuations will engender
an azimuthal pressure gradient.

Integrating Eq. (7) one arrives at

v=—(1)Ny2—yp)dp/dx+|A|Xx)f(y) . 8)

Using this expression for v, and Eq. (5), the boundary
condition on u (given above) leads to

d?p/d*x=—12Hd* A|*/d*x , )
where
1
H—fof(y)dy ) (10)

Equation (9) for pressure can now be integrated. Impos-
ing the condition that p (0)=p (L) one finds

dp/dx=12H(J—| A%, (11

where J is the integral given by expression (3). The in-
tegral term represents the effect on pressure of turbulent
fluctuations, via an expression of the Reynolds stress
type.

Now, for v, using (8), one has

v=|A4|%x)f () +6H(|A|>*—T)p>—y). (12)

The coefficient of the Poiseuille y dependent term is ex-
actly the term which appears in the amplitude equation,
namely, Eq. (4).

In the case of a small parameter expansion [10], the
preceding equation then leads, through a solvability con-
dition, to an amplitude equation such as Eq. (4) with the
correction due to the presence of a nonlocal term. In our
case, our discussion above can only make it plausible
that, whenever a subcritical GL amplitude equation is
used for annular flows, to describe the coexistence of tur-
bulent and laminar domains, a nonlocal term of the type
discussed occurs. The flow has to be annular, because the
derivation of the expression for the nonlocal term de-
pends crucially on the periodicity of pressure. For such
cases, however, the mechanism for turbulent spot stabili-
zation proposed here appears a natural consequence of
the hydrodynamics which describe the flow.
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